AKUR8

AKUR8

A Health Insurance Pricing Use Case

2025-06-30

Jan Küthe

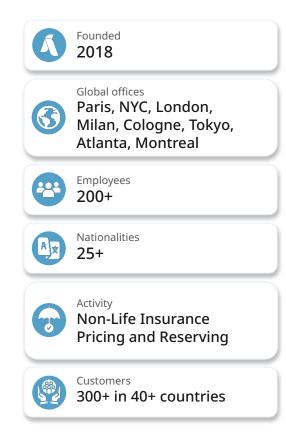
Actuarial Data Scientist, **Akur8** Actuary DAV

jan.kuethe@akur8.com

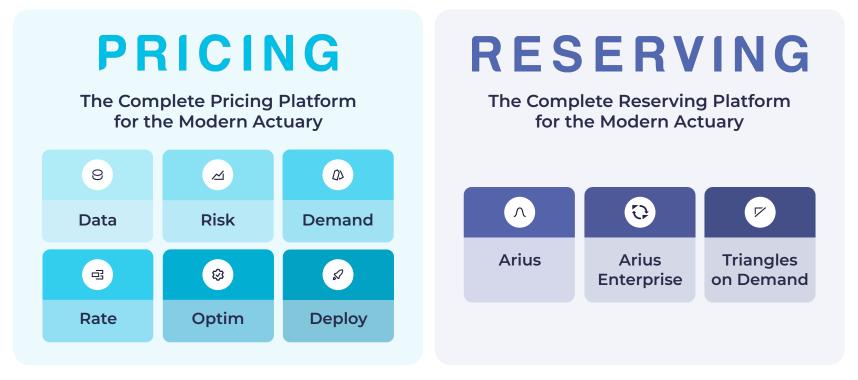
Lars Meder Sales CEE & DACH Akur8

lars.meder@akur8.com

Company overview



Akur8: Next-Gen Pricing and Reserving Platform



Agenda

Health Insurance Pricing Use Case

- **1.** Pricing Why and How?
- 2. Recap Quiz questions
- **3.** Use Case: How shall we apply the previous topics in Health?

4. Q&A

In Pricing companies can model Risk and Demand of clients and use these to adjust the Commercial Premium charged

Risk-based pricing

Commercial premiums are built up from the best view of risk, with minimal commercial adjustments on top.

Static demand

Demand (conversion and retention rates) is actively tracked and monitored. Spikes in demand are met with a corresponding commercial adjustment.

Dynamic demand

We not only model demand, but we also measure or model price elasticity of demand and take this into account when setting the commercial premium.

Price optimization*

The commercial premium is built using an optimization routine that takes our best understanding of risk and demand into account.

*In markets where regulation allows.

Why accurate models are important?

Lets start with an example from Motor Insurance!

Adverse selection example

Hypothetical market - two competitors with identical strategy

Company	Alpha Insurance	Beta Insurance
Premium for blue car (€)	100.00	100.00
Premium for red car (€)	100.00	100.00

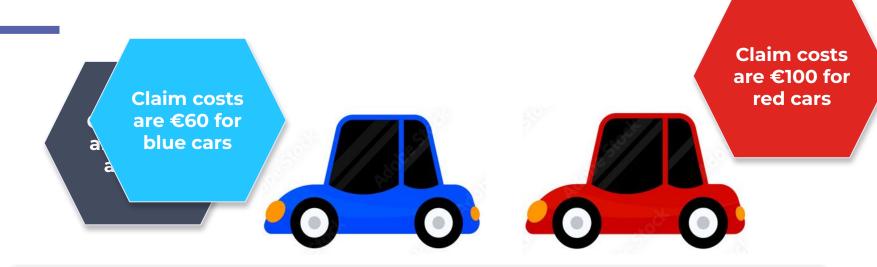
Adverse selection example

Results for identical strategy are the same

Company	Alpha Insurance	Beta Insurance						
Customers								
Av. Claim Cost (€)	80.00	80.00						
Av. Premium (€)	100.00	100.00						
Loss Ratio (%)	80.00	80.00						

Adverse selection example

Company B updates strategy to better reflect risk



Company	Alpha Insurance	Beta Insura	nce
Premium for blue car (€)	100.00		90.00
Premium for red car (€)	100.00		110.00

Insurance Pricing is Backwards Looking

The closer the Future resembles the Past, the more confidence we can have in our pricing

With historic data...

diverjage learkal_status diver_per 48 Maried Maie		ender vehicle		P		year	6995,68	ridde	alpeode		Expension		Number of Claires		Cost of the Claims				
		id Mai	Maia 0			2018	mex	model		60022		E-20030303030		0					
28	Mot	od Perre	de 4				2018	rredel riodel		63322 63022		E-4008086811 E-8274989976		1		6660.726273			
28	Mate	id Mai					2019												
71	Mas	id Mai	. 15	-			2018	nec	M.	600	22	E-83	E-8374099915		1		055544	65544	
42	00vw.290	warded, status	ditver gendes	veni	10,090	_	- 1		east.	usriable.	240	oode	Espera		Number	d Claims	Cost of the	e Clair	
25	48	Maried	Maia		0			2018	model		60022		6.2003333333		0				
74	28	Mariad	Female	-	4					odel		022	E-4000000811		1		5660.726273		
- 64	28	Maried	Maia		8					1034 83		022 E.8374W		99975					
બ	71	Mariad	Maia		15				model		63022		0.83749	E-8374090915 E-7291986413				540.4055544 2137.293887	
42	42	Moted	Female	-				2010		redel		63022							
- 28	35	Single	Female		2	-		2020	2022 0		62	022	£-69910	40754			2879.94	2879.560905	
24	74	Widow	Female		7					odel	52	999	E-37499	E-3749090155		1			
48	64	Maried	Female	-			-	2019	-	odel	80	020	6.37489	99155					
40	64	Maried	Female		9		_	2020		odei	55	222	6.2002222222		0				
41	42	Unknown	Male	-	9			2010		odel	17	993	8.37499	90155	0				
- 44	29	Unknown	Mile	-	0		-	2020	-	val		79	5.90500	80178					
50	24	Unknown	Female	-	- 0 - 2		_	2019		odei		1/29 0.927490		99712 0		_			
42	44	Marted	Family	-	T	-	-	2020	-	val		120 5.01999		130.00	7 1		200616316		
25	40	Single	Main	-	7		_	2020	0	odel		29	6.2082020202		1		2217.329258		
4	41	Mariad	Formale	-	5			2019				179	E.3749999155		0				
	44	Diversed	Male	-	3	-		2010	realed			6270 0.201000		64133			500.3186324		
	50	Cohebitere	Female	-	12		_	2016	0	model		6129 8-0008		33155	15 1		780.315274		
	42	Unknown	Male	-	2	-		2000		randal		60013		E-33333311645		1		825.8327242	
	25	Marind	Main		1			2020		iodel		80051 5.201		22222		0			
	44	Unknown	Main	-	0			NYA.	model		2160		E-2016064133					09.02754572	

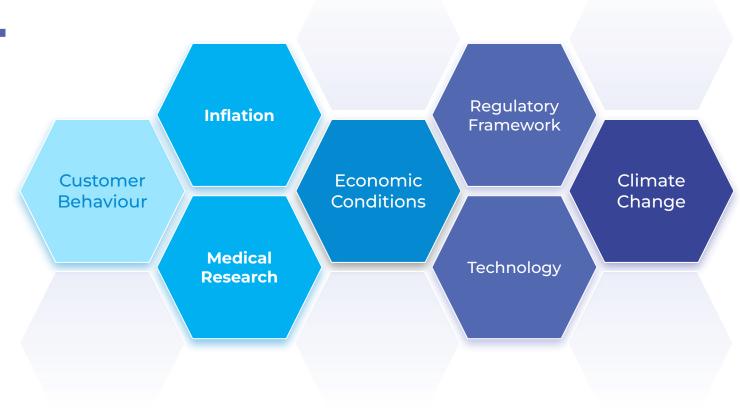
... we build pricing models and assumptions...

... to price for future risks

Past

Future

...but the Future is always different!



Actuarial modeling with GAMs

Actuarial modeling with GAMs

Actuarial modeling: from GLMs to GAMs

What GLMs Offer

Generalized Linear Models (GLMs) are, by definition, linear.

They are **easy to fit** as only one parameter has to be found for every variable

What we want.

We want to capture the **non-linear relations** between the explanatory and predicted variables.

They are **hard to fit** because, for every variable, a large number of parameters has to be found.

Fitting GAMs leveraging credibility

Prior and credibility

A credibility framework is defined by the prior assumptions the modeler has on their model. These **assumption represent a prior probability** distribution for the model coefficients. For instance, **"simpler" models are usually assumed to be "more likely"**.

Classic prior assumptions would be:

- "The coefficients follow a Gaussian distribution, centered on 0"
- "The coefficients follow a Laplace distribution, centered on 0"

The Maximum of Likelihood approach can incorporate prior information about the data. We define the likelihood as the probability of the observed data in a given model $p(y|\hat{y}(X))$

$$\beta^* = Argmax_{\beta} \ p(y|\hat{y}(X)) \times p_{prior}(\beta)$$

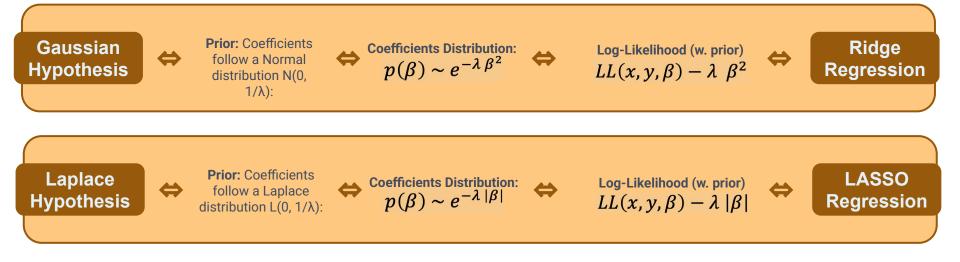
Changing the prior distribution of the coefficients allows the modeler to control for the strength of the prior. Taking the log of this formula provides an easy-to-optimize log-likelihood function, where *LL* is the log of the likelihood function.

$$\beta^* = Argmax_{\beta} \ LL(x, y, \beta) + \log(p_{prior}(\beta))$$

Fitting GAMs leveraging credibility

Prior \Leftrightarrow Penalized regressions: example of the linear regression

Prior assumptions are at the center of machine-learning methods used to control high-dimensional or correlated data, such as LASSO or Ridge regression. Controlling the distribution (through the λ parameter) allows the modeler to control the overfitting of the models.



What is signal and what is noise?

When trying to do any prediction based on observed data, it is important to make a distinction between:

- <u>Signal:</u> meaningful and systematic patterns or relationships within the data. It is the target information we are interested in predicting or understanding.
- <u>Noise:</u> random variation or error that is unrelated to the underlying signal. It can arise from sources such as measurement errors or sampling variability. Noise can introduce misleading patterns or correlations that are not representative of the true signal.

Striking the right balance between capturing signal and noise involves avoiding overfitting, i.e., not taking noise as if it were signal. By doing so, we can improve the model's ability to generalize and make accurate predictions on unseen data.

Smoothing out the noise

Choose a model that is smooth enough - i.e. no suspicious moves in the coefficients:

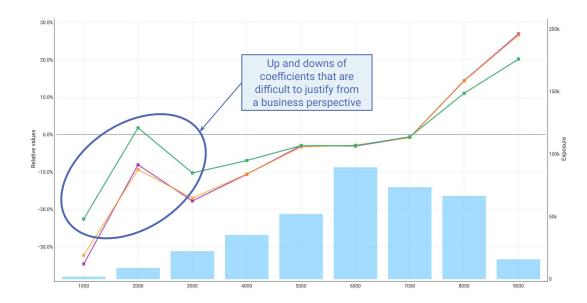
- If a model contains one variable with one dubious coefficient, it captures noise -> move to a smoother model instead,
- A model capturing noise in one coefficient was created with a weak statistical threshold: it may capture noise on all the other coefficient. Its low threshold does not provide good guaranties.

Once you have selected a model that is smooth enough, you need to check that the selected variables are non-redundant. If some variables do not provide value to the model, move to a model with fewer variables. Once you are satisfied you can tag the model.

The following slides will show examples of models for the risk associated with a vehicle mileage with different levels of smoothness.

Example of an overfitted model

--- Observed (%) Exposure train --- Predicted (%) --- Coefficient (%)



This graph is an example of a noisy, overfitted model.

We can see that the coefficients, shown in green, go up and down following every movement of the observed values.

Some of these trends are not very intuitive: why does risk go up from 1000 to 2000 limit, but then goes down again for limits of 3000?

We need to look for a smoother model.

Example of an underfitted model

--- Observed (%) Exposure train --- Predicted (%) --- Coefficient (%)

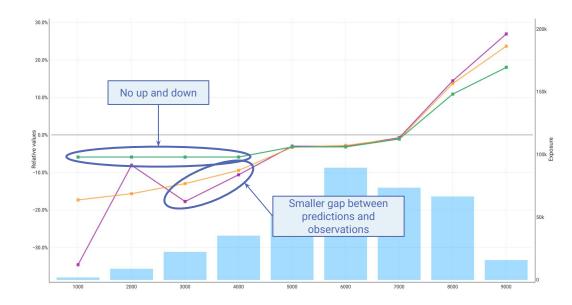
30.0% The gap between predictions and 20.0% observations here remains high when there is apparently enough exposure 10.0% Relative values 100k dx -10.0% -20.0% 50k -30.0% 1000 2000 3000 4000 5000 6000 7000 8000 9000

If the model is smoothed too much, we arrive to an underfitted model such as the one presented here.

In this case, the coefficients are flat for all values at or below 6000, so the credible upward trend is not captured. This results in predictions that are far from the observations.

Smoothing too much might prevent the model from capturing desirable signal

A balanced model



This graph shows a well balanced model that is not underfitted neither overfitted.

Coefficients are stable and show a general upward trend, which matches our expectations and the overall pattern of the purple line. The levels corresponding to limits 1000 and 2000 do not provide with signal with respect to limit 3000 and 4000, but this is actually positive given their low exposure.

As mentioned as the beginning of this presentation, the right threshold remains at the discretion of the user. If the smoothness level automatically suggested are not suitable, it is always possible to enrich a grid search with more smoothness steps.

Refresher on how to access time consistency graph

We first recall how to access the time consistency graphs:

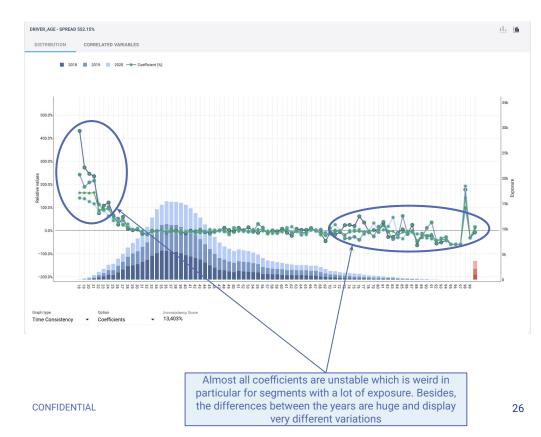
- Click on a model
- Then click on the variable tab
- When the graph of the variable is displayed, select time consistency in the coefficients option



Example of an overfitted model

This model is overfitted. It displays a lot of inconsistencies for every variables. These inconsistencies are:

- in a high proportion
- of a high magnitude
- display very different patterns in terms of trends and grouping



AKUR8

Example of an underfitted model

This is an underfitting model. This can be easily spotted because there no inconsistencies at all across all variables which is highly unlikely in reality.

Example of a balanced model

A balanced model might display some inconsistencies here and there but these inconsistencies are:

- in a small proportion
- not of a high magnitude
- displaying similar patterns in terms or trends and grouping

We have small inconsistencies here but we can see that the groups remain similar across the different year and that the decreasing trends are similar across the years

Gini index and Lorenz curve

The Gini index and the Lorenz curve

Definitions

The **Lorenz curve** is built this way:

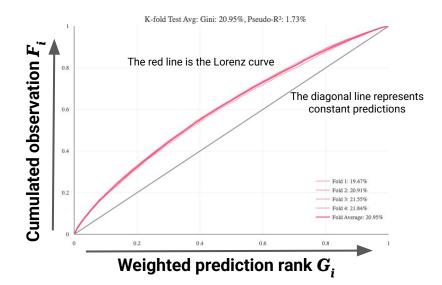
- Sort all model predictions from highest to lowest
- Plot the cumulative observed value More formally, we have on the x axis:

$$G_{i} = \frac{\sum_{j=1}^{n} w_{j} I(\hat{y}_{j} > \hat{y}_{i})}{\sum_{j=1}^{n} w_{j}}$$

And on the y axis:

$$F_{i} = \frac{\sum_{j=1}^{n} w_{j} y_{j} I(\hat{y}_{j} > \hat{y}_{i})}{\sum_{j=1}^{n} w_{j} y_{j}}$$

Thus a constant prediction ($y_i = \bar{y}$) leads to the diagonal line



The **Gini index** is twice the area between the Lorenz curve and the diagonal. It is:

- a classic measure of inequality in economics, adapted to evaluate models in insurance
- useful for interpreting skewed distributions and unbalanced datasets
- a measure of improvement over constant prediction

The Gini index and the Lorenz curve

Gini intuition: perfect model

For a saturated logistic model (all predictions are 1 or 0 and equal to the observations):

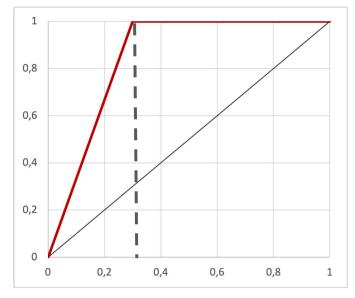
$$F_{i} = \frac{\sum_{j=1}^{n} y_{j} I(\hat{y}_{j} > \hat{y}_{i})}{\sum_{j=1}^{n} y_{j}} = \begin{cases} i/TP, \ i < TP \\ 1, \ i > TP \end{cases}$$

In other words, the Lorenz curve looks like in the image:

- All positives are on the left
- Straight line up to the fraction of positives

The exact Gini can be computed easily:

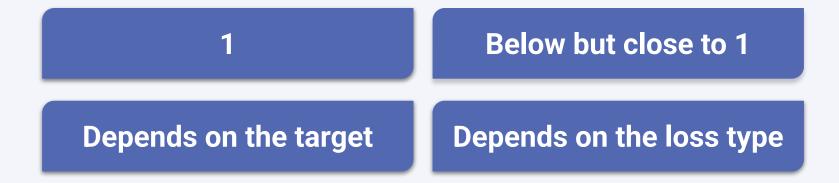
- The total area under the red curve is half the fraction of positives (from the triangle on the left) plus the fraction of negatives (the rectangle on the right): A = (TN+TP/2)/n
- And Gini = $2A \frac{1}{2} = TN/n = TNR$



Fraction of positives

In general, the Gini of a perfect model depends only on how balanced or unbalanced is the target

What is the Gini index of a perfect model?



What is the Gini index of a perfect model?

Depends on the target

The Gini index of a perfect model depends on how unbalanced the target is. It can be close to 1 for frequency models with very few claims, but much lower in some severity models.

A model with more variables is always better?

A model with more variables is always better?

Okham's razor incite us to favor parsimony that is if two models have identical performance with a different number of variables, we should take the model with fewer variables. If adding variables can increase performance, adding too many variable leads to overfitting.

False

What is the time consistency check?

It is a check in which we backtest the predictions of the candidate model with the historical data. It is needed to have a well performing model.

It is a check needed to validate the candidate model. We need to be sure that the estimated coefficients are consistent over time. It is a check in which we benchmark the candidate model with a GBM containing only the time variable. It is needed to retain full transparency of the model.

It is a check in which we compute the time needed to fit the candidate model to be sure that if we refit it in the future, it will not take too long.

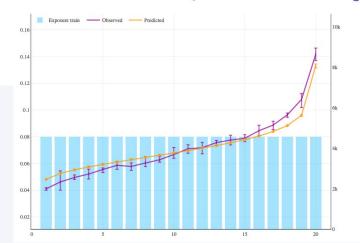
What is the time consistency check?

It is a check needed to validate the candidate model. We need to be sure that the estimated coefficients are consistent over time.

Before putting in production a model, we need to check that all variables entering the model are consistent over time. In Akur8, this is achieved by fitting an interaction between the time variable and the model variables.

Quiz Question 4

Why is this model likely underfitting?



K-fold Test Avg. Lift Curve

A: Because it has 20 bins, which are too many

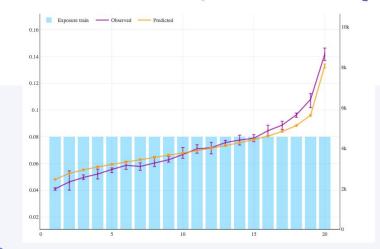
B: Because it underestimates high risk and overestimates low risk

C: Because the predicted curve crosses the observed one

D: Because the exposure is equally distributed along the horizontal axis

Quiz Question 4

Why is this model underfitting?



K-fold Test Avg. Lift Curve

This model is underfitting and we can see this in the right and left ends of the graphs. For low risk segments (left-hand side), the predicted line is above the observed one. For high risk segments (right-hand side), we can see the opposite behaviour

B: Because it underestimates high risk and overestimates low risk

Live Use Case

Thank You!

28 rue de Londres, 75009 Paris FRANCE

